Highly conducting π-conjugated molecular junctions covalently bonded to gold electrodes.
نویسندگان
چکیده
We measure electronic conductance through single conjugated molecules bonded to Au metal electrodes with direct Au-C covalent bonds using the scanning tunneling microscope based break-junction technique. We start with molecules terminated with trimethyltin end groups that cleave off in situ, resulting in formation of a direct covalent σ bond between the carbon backbone and the gold metal electrodes. The molecular carbon backbone used in this study consist of a conjugated π system that has one terminal methylene group on each end, which bonds to the electrodes, achieving large electronic coupling of the electrodes to the π system. The junctions formed with the prototypical example of 1,4-dimethylenebenzene show a conductance approaching one conductance quantum (G(0) = 2e(2)/h). Junctions formed with methylene-terminated oligophenyls with two to four phenyl units show a 100-fold increase in conductance compared with junctions formed with amine-linked oligophenyls. The conduction mechanism for these longer oligophenyls is tunneling, as they exhibit an exponential dependence of conductance on oligomer length. In addition, density functional theory based calculations for the Au-xylylene-Au junction show near-resonant transmission, with a crossover to tunneling for the longer oligomers.
منابع مشابه
In situ formation of highly conducting covalent Au-C contacts for single-molecule junctions.
Charge transport across metal-molecule interfaces has an important role in organic electronics. Typically, chemical link groups such as thiols or amines are used to bind organic molecules to metal electrodes in single-molecule circuits, with these groups controlling both the physical structure and the electronic coupling at the interface. Direct metal-carbon coupling has been shown through C60,...
متن کاملLength-dependent thermopower of highly conducting Au-C bonded single molecule junctions.
We report the simultaneous measurement of conductance and thermopower of highly conducting single-molecule junctions using a scanning tunneling microscope-based break-junction setup. We start with molecular backbones (alkanes and oligophenyls) terminated with trimethyltin end groups that cleave off in situ to create junctions where terminal carbons are covalently bonded to the Au electrodes. We...
متن کاملConjugated thiol linker for enhanced electrical conduction of gold-molecule contacts.
Single-molecule electrical conduction studies are used to evaluate how the molecular linking unit influences the tunneling efficiency in metal-molecule-metal (m-M-m) junctions. This work uses conducting-probe atomic force microscopy (CP-AFM) to compare the molecular conduction of two pi-bonded molecules: one with a single thiol linker, and another with a conjugated double thiol linker at both e...
متن کاملDiamondoid-based molecular junctions: a computational study.
In this work, we deal with the computational investigation of diamondoid-based molecular conductance junctions and their electronic transport properties. A small diamondoid is placed between the two gold electrodes of the nanogap and is covalently bonded to the gold electrodes through two different molecules, a thiol group and a N-heterocyclic carbene molecule. We have shown that the thiol link...
متن کاملLinker dependent bond rupture force measurements in single-molecule junctions.
We use a modified conducting atomic force microscope to simultaneously probe the conductance of a single-molecule junction and the force required to rupture the junction formed by alkanes terminated with four different chemical link groups which vary in binding strength and mechanism to the gold electrodes. Molecular junctions with amine, methylsulfide, and diphenylphosphine terminated molecule...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 133 43 شماره
صفحات -
تاریخ انتشار 2011